1 🔲 2 🔲 **3.1 Atoms**

- Organisms are chemical machines
- Any substance in the universe that has mass and occupies space is comprised of matter
 - -all matter is made up of atoms
- 3 🔲 3.1 Atoms
 - All atoms have the same structure
 - –at the core is a dense nucleus comprised of two subatomic particles
 - protons (positively charged)
 - neutrons (no associated charge)
 - –orbiting the nucleus is a cloud of another subatomic particles
 •electrons (negatively charged)
- 4 🔲 3.1 Atoms
 - Atoms are characterized by # of protons it has or by its overall mass
 - -atomic number
 - •# of protons in the nucleus
 - atoms w/ same atomic # exhibit the same chemical properties and are considered to belong to same element –mass number (atomic mass)
 - •# of protons + # of neutrons in nucleus
 - •electrons have negligible mass
 - •Defines the isotope
- 5 🔲 **3.1 Atoms**
 - Electrons determine the chemical behavior of atoms
 - -these subatomic components are the parts of the atom that come close enough to each other in nature to interact
- 6 🔲 **3.1 Atoms**
 - · Electrons are associated with energy
 - -electrons have energy of position, called potential energy
 - -the field of energy around an atom is arranged as levels called electron shells
 - •within this volume of space, orbitals are where electrons

are most likely to be found

- 7 🔲 3.1 Atoms
 - Electron shells have specific numbers of orbitals that may be filled with electrons
 - atoms that have <u>incomplete</u> electron orbitals tend to be <u>more</u> reactive
 - -atoms will lose, gain, or share electrons in order to fill completely their outermost electron shell
 - -these actions are the basis of chemical bonding
- 8 🔲 3.1 Atoms
 - as electrons move to a lower energy level, closer to the nucleus, energy is released
 - moving electrons to energy levels farther out from the nucleus requires energy

9 🔲 3.2 lons and lsotopes

- lons atoms that have gained or lost one or more electrons
- <u>Isotopes</u> atoms that have the same # of protons but different # of neutrons
 - most elements in nature exist as mixtures of different isotopes
- 10 E Figure 3.5 Isotopes of the element carbon

11 B More on Isotopes

- Some isotopes are unstable
 - break up into particles w/ lower atomic numbers
 - -this process is known as radioactive decay
- Radioactive isotopes have multiple uses
 - -nuclear medicine
 - -dating fossils
- 12 🔲 Isotopes
 - Short-lived isotopes decay rapidly and do not harm the body

• Can be used as tracers to study how the body functions

13 Another Use for Isotopes

- Dating fossils
 - -rate of decay of a radioactive element is constant
 - -by measuring the fraction of radioactive elements that have decayed, scientists can date fossils
 - -the *older* the fossil, the *greater* the fraction of its radioactive atoms that have decayed

14 Figure 3.7 Radioactive isotope dating

- C12 most common carbon isotope
- C14 is a short lived isotope
- C12:C14 ratio constant
- When animal dies, C14 decays. C12 stays same.
- Ratio of C14: C12 \downarrow s by ½ every 5,730 yrs
- This is the half life of carbon 14.

15 🔲 3.3 Molecules

- · Molecule: grp of atoms held together by energy
 - called a chemical bond
 - 3 principal types of chemical bonds
 - 1.ionic
 - 2.covalent
 - 3.hydrogen

16 IONIC BONDS can form molecules

- Ionic bonds involve the attraction of opposite electrical charges
- Molecules comprised of these bonds are often most stable as crystals

17 Ovalent bonds can form molecules

• form between 2 atoms when they share electrons

-the # of electrons shared varies depending on how many the

atom needs to fill its outermost electron shell
 -covalent bonds are stronger than ionic bonds Last but not least: Hydrogen Bonds are weak bonds that form due to covalent bonds where one nucleus attracts the shared electrons more than another nucleus
 –this attraction for electrons by a nucleus is called the atom's electronegativity
 –e- from H more strongly attracted to the O nucleus than its own H nucleus. This causes a strong – charge by the O nucleus and a more + charge near the H nucleus. –POLAR molecule
 ¹⁹ Figure 3.9 (a) Water molecules contain two covalent bonds ²⁰ 3.3 Molecules Hydrogen bonds form in association with polar molecules each atom with a partial charge acts like a magnet to bond weakly to another polar atom with an opposite charge H bonds have cumulative strength ²¹ 3.4 Hydrogen Bonds Give Water Unique Properties Water is essential for life
-the chemistry of life is water chemistry
Water is a polar molecule
 -water can form hydrogen bonds -hydrogen bonding confers on water many different special properties 22 5 Unique Properties of Water Heat Storage -water temperature changes slowly and holds temperature well

- Ice Formation
 - -few hydrogen bonds break at low temperatures
 - •water becomes less dense as it freezes because hydrogen bonds stabilize and hold water molecules farther apart
- High Heat of Vaporization
 - -at high temperatures, hydrogen bonds can be broken
 - •water requires tremendous energy to vaporize because of all the hydrogen bonds that must be broken

23 3.4 Hydrogen Bonds Give Water Unique Properties

- Water molecules are sticky
 - –cohesion when one water molecule is attracted to another water molecule
 - –adhesion when polar molecules other than water stick to a water molecule

24 The last unique property of water is that it is highly polar

- in solution, water molecules tend to form the maximum number of hydrogen bonds
 - •hydrophilic molecules are attracted to water and dissolve easily in it
 - -these molecules are also polar and can form hydrogen bonds
 - hydrophobic molecules are repelled by water and do not dissolve
 - -these molecules are non-polar and do not form hydrogen bonds

25 🔲 3.5 Water Ionizes

• The covalent bond within a water molecule breaks spontaneously

• This produces two ions in a process called ionization

-because of the great strength of covalent bonds, this does not occur too often

26 🔲 3.5 Water Ionizes

- The amount of ionized hydrogen from water in a solution can be measured as pH
- The pH scale is logarithmic, which means that a pH scale difference of 1 unit actually represents a 10-fold change in hydrogen ion concentration
- 27 Figure 3.14 The pH scale

28 🔲 3.5 Water Ionizes

- Pure water has a pH of 7 -there are equal amounts of [H+] relative to [OH-]
- Acid any substance that dissociates in water and increases the [H⁺]

-acidic solutions have pH values below 7

 Base – any substance that combines with [H⁺] when dissolved in water

-basic solutions have pH values above 7

29 🔲 3.5 Water Ionizes

- The pH in most living cells and their environments is fairly close to 7
 - -proteins involved in metabolism are sensitive to any pH changes
- metabolic activities & dietary intake and processing creates acids and bases
- Organisms use buffers to minimize pH disturbances

30 3.5 Water Ionizes

 Buffer – a chemical substance that takes up or releases hydrogen ions

-buffers don't remove the acid or the base affecting pH but

minimize their effect on it

 most buffers are pairs of substances, one an acid and one a base

31 Ch. 4 Molecules of Life

- 4 types of Macromolecules (polymers)
 - -Proteins
 - -Nucleic Acids
 - -Carbohydrates
 - -Lipids

Monomers: single unit that repeats to make up a polymer.

- 32
- Organic Molecule: any molecule that has a carbon based core with special groups attached.
- These special groups give the molecule it's identity.

33 How to make and break a macromolecule

- Dehydration Synthesis: BUILDS
 –Remove a H2O (H from one and OH from another)
- Hydrolysis: DESTROYS a polymer –Add a H2O molecule

-Requires Enzymes to do this

- 34 Figure 4.2 (a) Dehydration synthesis
- 35 Figure 4.2(b) Hydrolysis
- 36 **4.2** Proteins
 - amino acids
 - -the covalent bond linking two amino acids together is called a peptide bond
 - -the assembled polymer is called a polypeptide
- 37 Table 4.2 The many functions of proteins
- 38 🔲 **4.2 Proteins**
 - AA are small molecules with a simple basic structure, a carbon atom to which three groups are added
 - an amino group (-NH₂)
 - a carboxyl group (-COOH)

- a functional group (R)
- The functional group gives amino acids their chemical identity
 there are 20 different types of amino acids
- 39 **4.2** Proteins
 - Protein structure is complex
 - -the order of the AA that form the polypeptide is important
 - the sequence of the amino acids affects how the protein folds together
 - -the way that a polypeptide folds to form the protein determines the protein's function
 - some proteins are comprised of more than one polypeptide

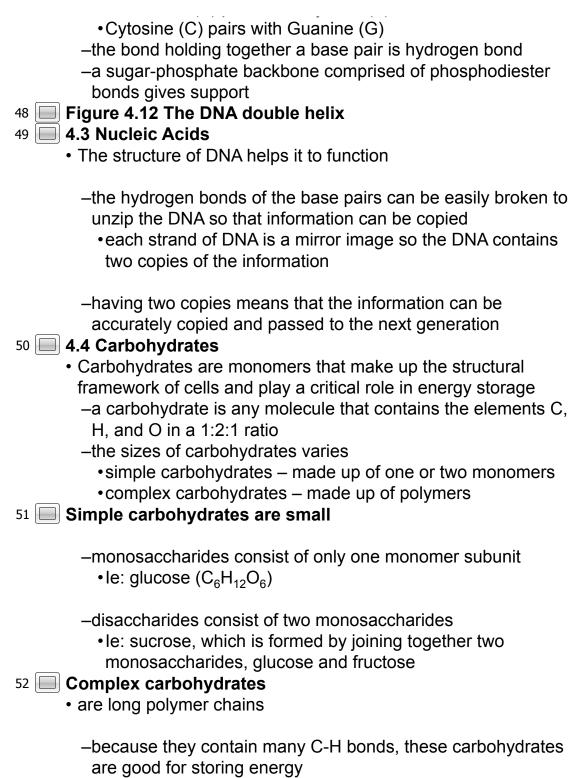
40 **4.2 Proteins**

- · There are four general levels to protein structure
 - 1. Primary: the sequence of AA in the polypeptide chain
 - 2. Secondary: folded
 - 3. Tertiary: 3d
 - 4. Quaternary: Multiple polypeptide chains
- 41 Eigure 4.5 Levels of protein structure (circle the primary structure)
- 42 🔲 **4.2 Protein**
 - The shape of a protein affects its function
 - -changes to the environment of the protein may cause it to unfold or denature
 - increased temperature or lower pH affects hydrogen bonding, which is involved in the folding process
 - -a denatured protein is inactive

43 **4.2 Proteins**

• Enzymes are globular proteins that have a special 3-D shape that fits precisely with another chemical

-cause the chemical that they fit with to undergo a reaction


-process of enhancing a chemical reaction: catalysis

44 🔲 4.2 Proteins

- Proteins fold specifically
 - -the folding process is helped by special proteins called chaperone proteins
 - •these proteins somehow correct a misfolded protein
 - defective chaperone proteins may play a role in certain genetic disorders that involve defective proteins –Cystic fibrosis
 - –Alzheimer's

45 43 Nucleic Acids: 2 types

- · Nucleic acids are very long polymers that store information
 - Monomers: nucleotides
 - each nucleotide has 3 parts
 - 1.a five-carbon sugar
 - 2.a phosphate group
 - 3.an organic nitrogen-containing base
 - 5 different types of nucleotides
 - information is encoded in the nucleic acid by different sequences of these nucleotides
- 46 **2 types of nucleic acids**
 - -Deoxyribonucleic acid (DNA)
 - -Ribonucleic acid (RNA)
 - RNA is similar to DNA except that
 - -it uses uracil instead of thymine
 - -it is comprised of just one strand
 - -it has a ribose sugar
- 47 🔲 4.3 Nucleic Acids
 - The structure of DNA is a double helix because -there are only two base pairs possible
 - •Adenosine (A) pairs with thymine (T)

•these bond types are the ones most often broken by

organisms to obtain energy

-long chains are called polysaccharides

53 🔲 4.4 Carbohydrates

- Plants and animals store energy in polysaccharide chains formed from glucose
 - -plants form starch
 - -animals form glycogen
- Some polysaccharides are structural and resistant to digestion by enzymes
 - -plants form cellulose cell walls
 - -some animals form chitin for exoskeletons

54 Carbohydrates and their function

- Lactose is a disach.
 - Storage polysaccharide in plants is starch
 - Storage in animals as glycogen.
 - Cellulose is a polysaccharide in cell walls.
 - Chitin is a polysacch. In external skeletons of insects.
- 55 🔲 **4.5 Lipids**
 - Lipids fats and other molecules that are not soluble in water –lipids are non-polar molecules
 - -lipids have many different types
 - fats
 - •oils
 - steroids
 - rubber
 - waxes
 - •pigments

56 🔲 **4.5 Lipids**

- Fats are converted from glucose for long-term energy storage
 - fats have two subunits
 - 1.fatty acids
 - 2.glycerol

- fatty acids are chains of C and H atoms, known as hydrocarbons
 - the chain ends in a carboxyl (-COOH) group

57 E Fat Molecules: a 3 C glycerol + 3 FA tails

- Most animal fats are saturated (each C has the max # of H) butter
- Sat. Fats: solid @ rm temp
- Most plant fats are unsaturated (Oil) contain double bonds Liquid @ rm temp

58 Figure 4.17(b,c) Saturated and unsaturated fats

- Saturated/ animal/ hard
- Unsaturated/ plant/ soft
- 59 🔲 **4.5 Lipids**
 - Biological membranes involve lipids
 - -phospholipids make up the two layers of the membrane -cholesterol is embedded within the membrane

60 Other Types of Lipids

- Phospholipids: glycerol, two fatty acids, and a phosphate group
- 61 fatty acid tails are flexible, makes lipid bilayer fluid
- 62